1963

Comment on “Conditions for
Maximum Power Transfer”*

In recent correspondences by Shulman,!
Castagnetto and Matheau,® there arc dis-
cussions of the conditions for maximum
power transfer. In Shulman’s notation,
the source impedance is Z,=R,+jX,
=Rs(1+7jx,), the load impedance is Z
=R-+jX =Ry(r+jx), P is the power deliv-
ered to the load, and P, is the maximum
power available from the source. A very
simple procedure is to plot Z’=r-+j(x+x,)
on a Smith Chart. Maximum power transfer
occurs when 2’ is the closest to the center of
the chart. In other words, maximum power
transfer occurs when

74 e+ x) — 1
et a) + 1
is minimized, because
1 - T2= P/P,
H. F. Matars

North American Aviation, Inc.
Columbus, Ohio
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Graphical Analysis of @ Circuits™

The parameters of a resonator which is
coupled to a transmission line can be de-
termined in a straightforward way from the
measurement of the reflectance on the
line.!”3 However, graphical methods of
evaluating the resonator parameters are
based on the assumption that the induct-
ance of the coupling loop can be neglected
in coruparison with the involved impedances.
A simple method of graphical evaluation of
the resonator parameters which takes into
account the coupling inductance too will be
described here.

The need for such a method arose in the
course of the development of a wavemeter
which had a resistance Ry in series with the
coupling loop. The input reflectance in the-
detuned short position is shown on Fig. 1.
It is seen that the Q circle does not have
its center on the real axis.
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Correspondence

Fig. 2 shows the equivalent circuit for
the case under investigation. The position
of the minimum voltage for the detuned
resonator is marked with 5—5, the detuned
short position. The reflectances measured
on the slotted line in the reference plane
b—b produce the @ circle on the Smith
Chart, denoted ¢ in Fig. 3. Its radius #
can be measured on the T scale which is
usually added to the Smith Chart. The
ceunter of the Q circle is denoted \S; while S,
denotes the center of the Smith Chart.

The first step in the graphical analysis
under consideration is to determine the
circle Cy which tangentially touches the
unit circle (circumfercnce of the Smith
Chart) and the Q circle in the point F,.
The casiest way of locating the circle s is
by simple trial. The straight line through
points F, and .5; is drawn and the point
Ss is located, which makes F.S.=.5.4. 4 is
the touching point of the circle C; with the
unit circle, The circle C, with the radius

Fig. 1— Typical plot of the input reflectance of a
resonator with coupling logses F 1s the reflect-
ance of the detuned resonator.
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Fig. 2—Equivalent circuit of a resonator with coupl-
ing losses. a-a 1s the mput terminals plane, 5-bis
the detuned short plane.
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Fig. 3—Input reflectance in the detuned short plane
(circle Ci1). The radii of circles C1 and (» deter-
mine the coupling coefficient, Also shown is the
construction of a linear frequency scale,
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ry is thus obtained. The series resistance R,
in the coupling circuit is given by the rela-
tion

Ry = Rk (71: -~ 1) , )]

where Rg denotes the characteristic resist-
ance of the slotted line.

The coupling coefficient x is here defined
as the ratio of coupled resistance to cavity
resistance. This corresponds to the situation
described by Ginzton® in his Figure 9.3d.
The coupling coefficient can be determined
from the radii 1 and r

4

k= : @

Yo — 1

Note that it is irrelevant whether the Q
circle is overcoupled or undercoupled. All
the relations given here are valid for both
cases.

The straight line f-f drawn through S,
perpendicularly to the line F_S, is pro-
vided with a linear frequency scale. The
particular frequency f, is determined by
projecting on the scale f-f the point F, out
of the point F,. The frequency f;, corre-
sponding to Fy, is the rescnant frequency of
the loaded resonator.

By drawing two straight lines through
the point F, at 45° to the line F_S;, one ob-
taing the points F; and F,. The correspond-
ing frequencies f; and f, are then deter-
mined on the frequency scale f-f. The Q
value of the loaded resonator follows from
the familiar expression

fo
fo— N
For the sake of clarity, the rest of the
analysis is explained on Fig. 4. From point
A two straight lines are drawn at 45° to the
line 4S,, and a third line perpendicular to
A.S,. These three straight lines are denoted
I3, Iy and I;. The symmetry line between
points F, and A is drawn afterwards. The

Q= 3)

Fig. 4—The determination of the Qo and fo.
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crossings of this line with the lines /;, /s and
s are S5, Si and S;. These points are centers
of the circles C;, Cy and s passing through
the points F,, and 4.

To obtain a measure for the reactance
of the external circuit, we define

_ QJL1
Ri+ Rg

the value of which is determined by the
radii 7o and #; as follows:

O (€

4
0= = )
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For small values of Q; the point S; falls
faroutside the Smith Chart,and it is therefore
more convenient to determine Q; from the
angle o.

O = tga. (6)

The crossings of the circles C;, C; and C;
with the Q circle C; are the points F;, F,
and F;. The corresponding frequencies fs,
fi and f5 are found on the frequency scale.
The Q value of the unloaded resonator is
then given by

= f5 .
A

The frequency fs is the resonant frequency of
the unloaded resonator. Of course, Qo may
be evaluated also from

Qo= (1+x0z. 8

As it can be seen, the described method
permits the evaluation of resonator parame-
ters by a straightforward graphical analysis
on the Smith Chart. There is, therefore, no
need for auxiliary digrams, which are
necessary in the other existing methods?™

The limitation of the described method
consists in the fact that it is usable only in
cases where the losses in the coupling cir-
cuit can be represented by a series resistance
only. It is possible, however, to modify the
method also for such cases where the losses
are represented by a parallel resistance
only. The method becomes rather com-
plicated if the losses are to be represented
by a combination of series and parallel
resistance.’

Qo (7

Darxo Kajrez
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Calculating Coaxial Transmission~
Line Step Capacitance™*

As a frequent user of the curves given by
J. R. Whinnery, H. W. Jamieson and T. E.
Robbins,! I found it useful to arrive at a
simple polynomial in powers of « and 7,
which makes it possible to incorporate the
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TABLE I

1 Step on Inner

a; b, ¢t
i=1 —-0.771 +12 6 -+ 58.2
2 +1.49 -23.8 —100.0
3 —0.778 +13.1 =+ 27.7
4 +0.041 9 — 1.53 + 15 5§
5 +0.000 92 -+ 0.069 9 -~ 0.726
Step on Outer
ay by Ce
i=1 —0 606 —4.100 + 820
2 +1.13 +3.63 —138.6
3 —0 482 -1.36 + 48.6
4 —0.115 +1.92 + 10.2
N +0.024 0 ~0.182 - 0.397

step-capacitance calculation in a subroutine
in a computer program dealing with trans-
mission line calculations in coaxial lines.

From considering the peculiarities of the
curves (Fig. 8, and Fig. 9 in the above men-
tioned article), the following form was
chosen:

o= (ar? + bt + c1)a?
+ (ag7? + bor + c)a* + - -
+ (as7® 4 bsr + c5)er? mpf/cm.

The coefficients for both cases (step on
inner, step on outer) are given in Table I.
These coefficients give a perfect fit at points
a=0.1, 0.3, 0.5, 0.7, 0.9, and r=1, 3, 3, and
yield an accuracy of “line thickness” at any
other point between the limits 0.1<a<1.0,
1<7<L85.

P. I. Somro

Div. of Applied Physics
National Standards Lab.
C.S.I.R.O.

Australia

Field Measurements Using
Active Scatterers™*

A general theory for analyzing scatter-
ing from loaded scatterers is available, and
has been applied to small scatterers suitable
for electromagnetic field measurements.?
The theory is valid for both passive and
active loads, as long as the load is linear.
Ryerson has proposed the use of tunnel di-
odes to provide a negative resistance load,
thereby enhancing the scattered signal.2
His predictions have been verified experi-
mentally by measurements on dipoles and
tunnel diodes at .S band.? The use of scatter-
ers and tunnel diodes for field measure-
ments is discussed in this communication.
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The primary purpose of loading a small
scatterer is to increase its echo area. The
general formula is given by (18) of Har-
rington,! but in most cases the second term
is large compared to the first term. Also, by
reciprocity, the B of (18) is the scatterer
gain times its input resistance; hence

g . 1 GRiu
Zm+Zg

A2 T

where o=echo area, A=wavelength, Zn
=Ru+jXn=the input impedance of the
scatterer when used as an antenna, G is the
directive gain of the scatterer when used as
an antenna, and Z, is the load impedance
connected to the scatterer terminals. Note
that the echo area is completely determined
by the characteristics of the scatterer when
used as an antenna. The extension of (1)
to the case of bistatic scattering involves
merely the replacement of G? by GG, where
G, is the gain in the direction of the source
and G: is the gain in the direction of the re-
ceiver.

By using a negative resistance load, one
can make the denominator of (1) arbitrarily
small, obtaining very large echo areas from
small scatterers. In practice, the maximum
echo area is limited by instabilities that
arise. Some of the characteristics of small
scatterers with negative resistance loads
that are of importance in field measuring
techniques are as follows. 1) The scatterer
becomes extremely sensitive to proximity
effects, because a small change in Z., results
in a large change in ¢. Hence, such scatterers
might be useful for the measurements in
regions distant from objects, but probably
not close to objects. 2) The scatterer be-
haves similarly to a resonant circuit with
an effective quality factor

| X
R+ R;

which becomes very large when Ry is nega-
tive. Hence, the scatterer becomes a very
narrow-band device. This may be an ad-
vantage if a frequency-modulated system
is used, as discussed in Sec. VIII of Har-
rington! 3) Because the scatterer behaves
as a resonant circuit, it can be shown that
a scatterer is characterized by a constant
gain-bandwidth product, that is,

2

) 1)

Q= @

of3* = constant, 3)

where B=fractional frequency bandwidth
between points where o has fallen to 1/2 its
value at resonance. Fig. 1 illustrates this



