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Comment on “Conditions for

Maximum Power Transfer”*

In recent correspondences by Shulman,l

Castaguetto and IMatheau,t there arc dis-

cussions of the conditions for maximum

power transfer. In Shuhnan’s notation,

the source impedance is Z,= R, +j.X,

= R.( 1 +jx,), the load impedance is Z

= R+jX = R,(r +jx), I’ is the pow-er deliv-

ered to the load, and PO is the maximum
power available from the source. A very
simpIe procedure is to plot Z’= r +j(x +x, )

on a Smith Chart. hIaximum power transfer
occurs when Z’ k the closest to the center of

the chart. In other words, maximum power

transfer occurs when

?’ -+ j(x + l’.) — 1
r = ———

Y-+j(.r + x,) +3

is minimized, because

1 – r’ = P/Po.
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* Received June 17.1963.
1 Carl Shulman, “Conditions for maximum power
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TECHNIQUES (Cowespmdewe), vol. MTT.9, pp. 453-
454, September, 1961.
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man,, “Some remarks concerning ‘ Conditions for
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Graphical Analysis of Q Circuits*

The parameters of a resonator which is

coupled to a trmsrnission line can be de-

termined in a straightforward way from the
measuren lent of the reflectance on the

line.’-s Howex-er, grzzphical methods of

evaluating the resonator parameters are

based on the assumption that the induct-
ance of the coupling loop can be neglected
in comparison with the involved impedances.
A simple method of graphical e~-aluation of

the resonator parameters which takes into
account the coupling inductance too will be

described here.
The need for such a method arose in the

course of the development of a wavemeter
which had a resistance RI in series with the
coupling loop. The input reflectance in the-
detuned short position is shown on Fig. 1.

It is seen that the Q circle does not have
its center on the real zmis.

Correspondence

Fig. 2 shows the equivalent circuit for

the case uuder investigation. The position

of the minimum voltage for the detuned

resonator is marked with b—b, the detuned
short position. ‘~he reflectance measured

on the slotted line in the reference plane

b–-b produce the Q circle on the %lith

Chart, denoted Cl in Fig. 3. Its radius 71
can be measured On the P sCale which is

usually added to the Smith Chart. The
center of the Q circle is denoted S1 while .$

denotes the center of the Smith Chart.
The first step in the graphical analysis

under consideration is to determine the
circle Cz which tangentially touches the
unit circle (circumference of the Smith

Chart) and the Q circle in the point F~.
The easiest way of locating the circle C: is

by simple trial. The straight line through
points Fm and SI is drawn and the point

SZ is located, which makes “F&= .7Z.4. A is

the touching point of the circle C, with the

unit circle. The circle Cz with the radius

Fig. 1– Typical plot of the input reflectance of a
resonator with ccmphng 10SSES Fw M the reflect-
ance of the detuned resonator.

Fig. 2—Equivalent circuit of a resonator with cuuPl-
mg losses. a-a m the input terminals plane, b-b is
the detunecl short plane.

‘\

f\

Fig, 3—In put reflectance in the detuned short plane
(circle Cd. The radii of ~ircles CL and C, deter.
mine the, coupling, coefficient. Also shown is the
construction of a linear frequency scale.
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rz is thus obtained. The series resistance RI
in the coupling circuit is given by the rela-

tion

1()R1=RIC —-1 , (1)
l’~

where RK denotes the cha mcteristic resist-

ance of the slotted line.

The coupling coefficient x is here defined

as the ratio of coupled resistance to ca\,it y

resistance. This corresponds to the situation
described by Glnzton3 in his Figure 9.3d.
The coupling coefficient can be determined
from the radii rl and Fz

rl
~.—. (2)

Y2— r,

.Note that it is irrelevant whether the Q
circle is overcoupled or llndercoupled. All

the relations given here are valid for both
cases.

The straight line ~-~ cirawn through .~2

perpendicularly to the line F~S, is pro-
vided with a linear frequency scale. The

particular frequency ~, is determined by
projecting on the scale j-j the point F, out
of the point Fm. The frequency j~, corre-
sponding to FO, is the resc,nant frequency of
the loaded resonator.

By drawing two straight lines through

the point Fm at 45° to the line FJ,, one ob-
tains the points FI and F1. The correspond-
ing frequencies ~1 and ~1 are then deter-

mined on the frequency scale ~-j”. The Q

value of the loaded resonator follows from

the familiar expression

QL . L-. .
j, –f] (3)

For the sake of clarity, the rest of the

analysis is explained on Fig. 4. From point
A two straight lines are drawn at 45° to the
line A .S., and a third line perpendicular to

A.&. These three straight Iincs are denoted
1~, 24 and 15. The symmetry line between

points Fm and A is drawn afterwards. The

Fig. 4—The determination of the L% and A.
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crossings of this line with the lines &, L and
25are s8, S4 and .S,. These points are centers
of the circles C3, Cl and G passing thrOugh

the points F. and A.

To obtain a measure for the reactance
of the external circuit, we define

Q,=-3.!!_,
RI + RK

(4)

the value of which is determined by the
radii rz and % as follows:

(5)

For small values of QI the point S, falls

far outside the Smith Chart, and it is therefore
more convenient to determine QI from the
angle a.

Q, = tg a. (6)

The crossings of the circles G, Cd and G
with the Q circle Cl are the points F~, F~
and FS. ‘The corresponding frequencies ~J,

f.I and ~, are found on the frequency scale.
The Q value of the unloaded resonator is

then given by

Qo=& (7)

The frequency~s is the resonant frequency of
the unloaded resonator. Of course, QO may
be evaluated also from

Qo = (1 + K)Q~. (8)

As it can be seen, the described method
permits the evaluation of resonator parame-

ters by a straightforward graphical analysis

on the Smith Chart. There is, therefore, no
need for auxiliary digrams, which are

necessary in the other existing methods2-4

The limitation of the described method
consists in the fact that it is usable only in
cases where the losses in the coupling cir-

cuit can be represented by a series resistance
only. It is possible, however, to modify the
method also for such cases where the losses

are represented by a parallel resistance
only. The method becomes rather com-

plicated if the losses are to be represented

by a combination of series and parallel
resistance.5

DARKO KAIFEZ

Institute of Automation

Ljubljana, Yugoslavia

Calculating Coaxial Transmission-

Line Step Capacitance*

As a frequent user of the curves given by

J. R. Whinnery, H. W. Jamieson and T. E.
Robbins,l I found it useful to arrive at a
simple polynomial in powers of a and r,
w-hich makes it possible to incorporate the

* Received June 5, 1963,
I J. R. Whinnery, H. W. .la,rnieson. and T. E. Rob-

~ills, <fCoaxial line discontinultles. “ PROC. IRE, vol.
32, PP. 695–709; November, 1944.

TABLE I

Step on Inner

aj b, Ci
——

;=l –0,771 +12 6
-t-l .49

+ 58.2
–23.8 –100.0

; –0.778 +13.1 + 17.7
4 +0.041 9 – 1.53 +155
5 +0 .000 92 + 0.069 9 - 0.726

Step on Outer

a _l_A__]_ C——. ——
<=1 –0 606 –4,100 +820

2 +1.13 +3. 63 –13S.6
3 –O 482 –1,36 + 48.6

–0,115 +1.92 + 10.2
: +0, 0240 –0.182 – 0.397

step-capacitance calculation in a subroutine
in a computer program dealing with trans-

mission line calculations in coaxial lines.
From considering the peculiarities of the

curves (Fig. 8, and Fig. 9 in the above men-
tioned article), the following form was
chosen:

C’d = (aITz + f)lT + C1)a2

+ (.,++ bm + CJCJ + . . .

+ (as++ b~r + .,)cF’ mPf/cm.

The coefficients for both cases (step on
inner, step on outer) are given in Table I.
These coefficients give a perfect fit at points
~=0.1, 0,3, 0,5, 0.7, 0.9, and r=l, 3, 5, and

yield an accuracy of “line thickness” at any

other point between the limits 0.1< a< 1.0,
1<7-<5.
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Field Measurements Using

Active Scatterers*

A general theory for analyzing scatter-
ing from loaded scatterers is available, and
has been applied to small scatterers suitable

for electromagnetic field measurements. 1
The theory is valid for both passive and

acti~-e loads, as long as the load is linear.
Ryerson has proposed the use of tunnel di-
odes to provide a negative resistance load,
thereby enhancing the scattered signal. z
His predictions have been verified experi-
mentally bv measurements on dipoles and

tunnel diodes at S band. a The use of scatter-

ers and tunnel diodes for field measure-
ments is discussed in this communication.

* Received April 26, 1963. The work rcrmrted here
was supported by Rome Air Develomnent Center
order Contract No. AF 30(602)-2900.

L R, F. Harrmgton, “Small resonant scatterers
and their use for field measurements, ” IRE ‘TRANS.
ON MICROWAI’E THEORY AND TECHNIQC,ES, vol. MTT-
10, PP. 165–174, May, 1962.

z J. L. Ryerson, “Scatter echo are~ enhan cement.”
:OC. IRE (Cm,resfiowleucel, vol. 50, P. 1979, SeP-
nber, 1962.

8 T Rm-mom. E. Calucci. and C. Blank. “The

PR,
ten

.Appl;;ation of Tunnel Dlodes”to a Reflecting Antenna
,4rray, ” Apphed Research Lab., Rome Au ll?velOD-

ment Center, Grifiss .41r Force Base, N. Y., T.D.
Rept. h’o. R.4DC-TDR-63-4; January, 1963.

The primary purpose of loading a small
scatterer is to increase its echo area. The
general formula is given by ( 18) of Bar-
rington, 1 but in most cases the second term
is large compared to the first term. Also, by

reciprocity, the B of (18) is the scatterer

gain times its input resistance; hence

u 1 I GR,. z

–7*1’~2
(1)

where u = echo area, k = wavelength, Z,.
= R,”+jX,, = the input impedance of the

scatterer when used as an antenna, G is the

directive gain of the scatterer when used as

an antenna, and ZL is the load impedance
connected to the scatterer terminals. Note

that the echo area is completely determined

by the characteristics of the scatterer when

used as an antenna. The extension of (1)
to the case of bistatic scattering involves

merely the replacement of G2 by G1G2, where

GI is the gain in the direction of the source

and G~ is the gain in the direction of the re-
ceiver.

By using a negati~,e resistance load, one
can make the denominator of ( 1 ) arbitrarily

small, obtaining very large echo areas from
small scatterers. In practice, the maximum

echo area is limited by instabilities that
arise. Some of the characteristics of small
scatterers with negative resistance loads

that are of importance in field measuring
techniques are as follows. 1) The scatterer

becomes extremely sensitive to proximity
effects, because a small change in Z,. results
in a large change in u. Hence, such scatterers
might be useful for the measurements in
regions distant from objects, but probably
not close to objects. 2 ) The scatterer be-
haves similarly to a resonant circuit with
an effective quality factor

(2)

which becomes very large when R~ is nega-
tive. Hence, the scatterer becomes a very
narrow-band device. This may be an ad-
vantage if a frequency-modulated system

is used, as discussed in Sec. VIII of Har-
ringtonl 3 ) Because the scatterer behaves

as a resonant circuit, it can be shown that
a scatterer is characterized by a constant
gain-bandwidth product, that is,

I@z = constant, (3)

where P = fractional frequency bandwidth
between points where u has fallen to 1/2 its
value at resonance. Fig, 1 illustrates this


